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Abstract

Crack detection made by the observation of structural dynamic responses has been implemented for
several years in non-destructive control using ultrasound transducers. More recently, detection methods
have been proposed based upon the analysis of modal properties. As it has been shown that the modal
frequencies are not very sensitive to the presence of a breathing crack, alternative detection techniques have
been proposed. They are based upon the analysis of the dynamic non-linear effects of the crack. These
effects essentially fall into two categories: the harmonic lobes of the main pure tone or modal excitations
and the modulation lobes between these excitations. In order to test them, various simulation methods can
be used. This paper presents the test of two simple one-dimensional finite element models and the
comparison of their results with a two-dimensional finite element model for the representation of the
stiffness loss of an open crack as well as the non-linear behaviour of a breathing crack. The configuration
considered is a simply supported beam with a crack at its middle point. Two distinct damage rates are
proposed as descriptors to characterize the presence of the crack in the beam: the harmonic damage rate
and the modulation damage rate. It is found that the simple one-dimensional models can accurately
determine the damage rates associated with the breathing crack, when compared to the results obtained
with the two-dimensional model. It is also found that the proposed damage rates can be efficiently used as
descriptors of the presence of a crack as their magnitude increases faster than the crack size and in a
monotonic way.
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1. Introduction

The non-linear effects of vibrating cracked beams are well known and many authors proposed
various measurement methods for crack detection, which essentially fall into three categories:
modal perturbation, harmonic lobes and modulation lobes.

The analysis and numerical modelling of eigenfrequency shifts due to the presence of an open
crack has been dealt with in the case of a Euler—Bernoulli beam [1,2] and other configurations
involving laminated composite materials [3]. Methods to identify the crack size and location from
the modal perturbation have also been proposed [4-6]. The effects of crack size on the first
eigenfrequency of a prestressed beam have been examined [7], and the authors showed that there
is significant coupling between the axial prestress load and the crack size. As industrial structures
are generally prestressed, the accurate prediction of the modal perturbation due to the crack
without knowing the exact prestressing conditions is difficult. Recently, the vibration response of
a beam with a breathing crack was examined by using a given continuous non-linear
representation of the mechanical behaviour generated by the crack [8]. The first eigenfrequency
was evaluated for various crack sizes assuming this specific non-linear continuous behaviour. For
this computation, the change in flexibility of the open-crack beam has been derived from a
polynomial expansion proposed in Ref. [9].

The analysis of harmonic lobes generated by acoustic energy emission in damaged bars was first
investigated in Refs. [10,11]. Concerning damaged rotating shafts, various crack models have been
developed from traditional fracture mechanics theory [12,13]. These studies showed that the
presence of a crack could be identified by the observation of the second harmonic of the rotating
frequency. Its non-linear effects generally lead to a strong increase of the second harmonic
magnitude whereas the first harmonic is more affected by an unbalance phenomena. Later, a
method was proposed [14] for the detection of cracks in rotating shafts based on long term
monitoring of the second and third harmonics response magnitudes as it was shown that they all
increase in direct proportion to crack size.

Recently, the use of vibro-acoustic modulation lobes to detect cracks in structures has been
emphasized [15-20]. The methods examine the non-linear effects generated by the breathing crack.
These observed effects are essentially the non-linear interaction between the ultrasonic probing
signal and the low-frequency vibrations of the cracked beam. Various materials have been
tested and the results showed that the method can be quite reliable for a non-destructive testing
process.

This paper presents an analysis of the approximation made by using two simple one-
dimensional models to simulate the stiffness loss of an open crack as well as the non-linear
behaviour of a breathing crack in a beam. A two-dimensional finite element model has also been
developed as a reference model. The two basic one-dimensional finite element models are
examined and their stiffness loss due to the open crack is tuned by fitting their first
eigenfrequencies with those of at the two-dimensional model. The fitting process uses simple
approximations for the relationship between the first eigenfrequencies and the open-crack rate.
The dynamic behaviour of the breathing crack is then modelled within the frame of a bilinear
constitutive law. With the three proposed models, the relationship between eigenfrequencies and
crack rate for a breathing crack is investigated and the results are compared. The computation of
the non-linear effects resulting from a breathing crack leads to the proposal of two descriptors
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that may allow one to detect the early presence of a breathing crack: the harmonic damage rate
and the modulation damage rate.

2. Approximation of the relationship between the eigenfrequencies and the open-crack rate

The geometrical crack rate is represented by «,

he

Go :75 (1)

where /. is the geometrical depth of the crack, and / is the thickness of the undamaged beam (see
Fig. 1).

In this section, it is intended to propose parametered functionals to accurately approximate the
variation of the first eigenfrequencies of beams in bending vibrations with a radial open crack.
The approximation functional can then be used to derive the so-called 1-D equivalent crack rate
as a function of the geometrical crack rate. The 1-D equivalent crack rate represents the loss of
rigidity that one should impose onto the 1-D model in order to match the variation of the first
eigenfrequencies of the 2-D model, considered here as a reference model.

Three finite element numerical models are being considered: one two-dimensional model
denoted 2-D and two one-dimensional models, respectively, denoted ‘1-D-EF’ and ‘1-D-SPR’.

In the 2-D model, the bending beam is discretized by means of plate elements with in-plane
deformations. The discretization mesh of the 2-D model is chosen to be regular and consists of
1060 rectangular plate elements. A mesh refinement is generated at the location of the crack for a
satisfactory representation of the strain energy distribution. The crack geometry is simulated by
extracting refined elements at the crack location. The depth of the crack is therefore obtained by
extracting 0 to 7 elements such that o, varies from 0 to 0.7 with a step of 0.1. The crack is located
at the middle point of the beam as shown in Fig. 1.

In both 1-D models, the beam is discretized with identical beam finite elements. Except at the
crack location, the discretization mesh of both 1-D-EF and 1-D-SPR models constituted of 50
regular beam clements.

In the 1-D-EF model, the stiffness loss is represented by means of one single modified beam
finite element. The cross-sectional moment of inertia of that beam element is chosen as the
parameter that allows one to match the modal behaviour of the 2-D model with a open crack. The
corresponding matching procedure is presented in Section 2.2.

In the 1-D-SPR model, the stiffness loss is represented by means of a bending spring connecting
both sides of the beam. The spring stiffness is chosen as the parameter that allows one to match
the modal behaviour of the 2-D model with a open crack. The corresponding matching procedure
is presented in Section 2.3.

For the numerical applications, the beam considered is chosen simply supported at its
ends, such that its length L =1m, its width b= 0.02 m, its thickness /4 = 0.05m, its
density p = 7850 kg m~3, its Young’s modulus E = 2.0 x 10"! Nm~2 and the Poisson ratio
v =0.29.
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Fig. 1. Cracked beam configuration and the three numerical models considered.

2.1. Eigenfrequency approximation for the 2-D model

The eigenfrequencies computed with the 2-D model of the beam are determined for eight
successive values of geometrical crack rate o,. It has been shown [21] that the evolution of the
beam eigenfrequency f; of rank i determined in term of its stiffness, and in this case, in term of «,,
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Table 1

2-D model—parameters of approximation (2) proposed for the reduced eigenfrequencies of the open-crack beam

Mode i Parameter ¢; Parameter ¢»; Maximum error on f;
(%)

1 2.3518 1.3908 0.218

2 3.3939 230.86 5.54%10~*

3 1.8813 2.5753 0.253

4 3.4036 63.426 1.80x1073

5 1.7588 3.3680 0.213

6 3.4380 31.468 3.13x1073

7 2.3228 2.1866 0.295

8 3.5008 19.498 8.19%x1073

can generally be accurately approximated by the following parametered relationship:

; o %" 2
Si(0o, q1is q2i) = 1 — ma (2)
where
~ Ji(%)
Op) = ———, 3
Soo) T =0) (3)

is the reduced eigenfrequency of the 2-D model; by definition, they always have positive values less
than 1.
Parameters ¢;; and ¢,; are determined by minimizing the following quadratic form:

N 2
- S0, q1i g2i)
i(q1is q21) = | ——=, 4
&i(qri> 421) ‘;E_1< 1) ) (4)

where f(a,) is the reduced eigenfrequency computed with the 2-D finite element model for
geometrical crack rate o;.
Table 1 presents parameters ¢;; and ¢»; for the first eight flexural eigenfrequencies of the beam.
The proposed approximation which may be considered as satisfactory as the maximum error
for the first eight reduced eigenfrequencies, is less than 0.3%. Fig. 2
presents the evolution of these eigenfrequencies as functions of the open-crack rate, obtained by
means of the 2-D finite element model on one hand, and approximation (2), on the other hand.
These results illustrate the good accuracy obtained with the proposed approximation (2).

2.2. Approximation for the 1-D-EF model

With the 1-D-EF model, the cross-sectional moment of inertia at the crack point is the
parameter used to match the first modal frequencies of the 2-D model. It may be written as

I =1, -0, (5)
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Fig. 2. 2-D model—exact and approximated computation of reduced eigenfrequencies evolution as functions of the

open-crack rate: (a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4, (e) mode 5, (f) mode 6, (g) mode 7, (h) mode 8.
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Fig. 2 (continued).
Table 2

1-D-EF model—parameters of approximation (6) proposed for the odd reduced eigenfrequencies of the open-crack

beam

Mode i Parameter py; Parameter p»; Parameter p3; Maximum error on f,
(%)

1 1.3244 x 1073 —1.8033 x 10~* —1.5184 x 10~* 0.253

3 1.3454 x 1073 —4.5862 x 10~* —1.5460 x 10~* 0.225

5 5.7961 x 103 —3.2693 x 103 —6.7454 x 1074 0.192

7 1.6677 x 1073 —1.3125 x 1073 —1.9369 x 10~* 0.174

where f is a coefficient arbitrarily chosen equal to 0.1 so that the range of magnitude of the 1-D-
EF reduced eigenfrequency is of the same order as the range of magnitude of the 2-D reduced
eigenfrequency. The various computation that were performed showed that the reduced
eigenfrequency evolution of the 1-D-EF model, determined in terms of «, can be accurately
approximated by the following parametered relation:

O(pli

Sile, pri,pai, p3) = 1 — p3; m. (6)

Parameters py;, py; and py; are determined by minimizing the quadratic form (4) in which f(a;)
represents the eigenfrequency computed with the 1-D-EF model. Table 2 presents the values
found for parameters py;, p»; and ps; of relation (6), for the first odd eigenfrequencies of the 1-D-
EF model. As the crack is located at the middle point of the beam, the 1-D-EF model does not
lead to any change of its even eigenfrequencies.

The maximum error is less than 0.3% for the first odd eigenfrequencies being considered.

Fig. 3 presents the evolution of the first odd reduced eigenfrequencies of the bending beam as a
function of the open-crack rate, obtained by means of the 1-D-EF finite element model on one
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Fig. 3. 1-D-EF model—exact and approximated computation of reduced eigenfrequencies evolution as functions of the
open-crack rate: (a) mode 1, (b) mode 3, (c) mode 5, (d) mode 7.

hand, and with approximation (6) on the other hand. The approximations realized are quite

satisfactory.
As relation (6) is simple enough, it can easily be inverted so that one gets
~ B/pui
= (vt )
o = (P—D—F—— ; (7
l l 1 —fi—psi

where ocfi denotes the 1-D-EF equivalent crack rate associated to eigenfrequency of rank i
obtained with the 1-D-EF model. Requiring the reduced eigenfrequency of the 1-D-EF model to
be equal the corresponding eigenfrequency of the 2-D model in Eq. (2), expression (7) leads to the
equivalent crack rate of model 1-D-EF as follows:

; B/pii
ﬁ _ o agll
o = (D) ®

q2iP3i — %o
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Fig. 4. 1-D-EF model-—equivalent crack rate expressed as a function of the geometrical open-crack rate for the first
odd eigenfrequencies.

so that the bending cross-section inertia of the element representing the crack may be written as

I =1,(1— o)

o(qli ﬁ/[)li
=I,(1- i — 1 9 . 9
<(p2 )Clzipsf —ad'(1 —P3i)> ©)

If this bending cross-section inertia is imposed on the 1-D-EF element that represents the crack,
then the variation with respect to o; of the ith reduced eigenfrequency of the 1-D-EF model
accurately matches the variation with respect to «, of the ith reduced eigenfrequency of the 2-D
model. Fig. 4 illustrates relation (8) for the first odd eigenfrequencies of the cracked beam in
bending vibrations with the 1-D-EF model.

The curves obtained for the equivalent crack rate of the 1-D-EF model, as a function of the
geometrical crack rate, are monotonic increasing curves. However, they are slightly different for each
odd number mode. The attempt to represent the stiffness loss of a beam cracked on one side by means
of a one-dimensional model, symmetric by definition, may explain these differences. Nevertheless, this
result illustrates the ability of this 1-D-EF model to accurately represent the behaviour of a beam with
a open crack in bending vibrations. The equivalent crack rates obtained for the first three odd
eigenfrequencies are very close, in the 0.1-0.7 range of variation of the geometrical crack rate.

2.3. Approximation for the 1-D-SPR model

With the 1-D-SPR model, the spring stiffness at the crack point is the parameter used to match
the first modal frequencies of the 2-D model. It may be written as

KMi = KM()(l - O‘ﬁ)- (10)
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Table 3
1-D-SPR model—parameters of approximation (6) proposed for the odd reduced eigenfrequencies of the open-crack
beam

Mode i Parameter py; Parameter py; Parameter ps; Maximum error on fl
(%)

1 3.2448 x 1073 —4.7694 x 1074 —3.3698 x 107* 1.19 x 1072

3 3.0116 x 1073 —1.0166 x 1073 —3.1571 x 10~* 8.84 x 1073

5 1.9036 x 1072 —1.0678 x 1072 —2.0729 x 1073 8.05 x 1073

7 2.7732 x 1072 —2.2245 x 1072 —3.1219 x 1073 8.95x 1073

The same approximation process as the one used for the 1-D-EF model has been implemented for
the 1-D-SPR model. Table 3 presents the values found for parameters py;, p;; and ps; in relation
(6), for the first odd eigenfrequencies obtained with the 1-D-SPR model.

For the first four eigenfrequencies of odd number rank, the approximation leads to a maximum
error of less than 0.012%. Fig. 5 presents the evolution of these first odd reduced eigenfrequencies
as functions of the crack rate, obtained by means of the 1-D-SPR finite element model on one
hand, and with approximation (6), on the other hand.

The approximations obtained are quite satisfactory. Expression (6) derived in the previous
section, applied also for the 1-D-SPR model. In this case, the spring flexural stiffness Ky, is
expressed as a function of the equivalent crack rate o;:

Ky = Kyo(1 — OC?)

o(qli ﬁ/Plf
=Ky, 1 — i —1 9_ . 11
M <(p2 )QZiP3i —ad'(1 —P3i)> (an

For the 1-D-SPR model, f is a coefficient arbitrarily chosen to be equal to 2.0 x 1073 so that the
range of magnitude of the 1-D-SPR reduced eigenfrequency is of the same order as the range of
magnitude of the 2-D reduced eigenfrequency.

Fig. 6 illustrates relation (11) for the first odd eigenfrequencies of the beam with an open crack
represented by the 1-D-SPR model.

The curves obtained for the equivalent crack rate of the 1-D-SPR model, as a function of the
geometrical crack rate are monotonic increasing curves. As for the 1-D-EF model, they are
slightly different for each odd number mode. These differences are larger than those of the 1-D-
EF model for small values of the geometrical crack rates being typically between 0 and 0.2. As the
crack is represented by a simple bending moment spring, it does not account for the stiffness loss
in shearing force at the crack point; this may explain the curve differences for the early crack rates.
For crack rates beyond 0.2, this result illustrates the ability of this 1-D-SPR model to accurately
represent the behaviour of a beam with a open crack in bending vibrations.

3. Analysis of the relationship between eigenfrequencies and crack rate for a breathing crack

The results obtained in the previous section allow one to compute, by means of each considered
model, impulse responses of the bending cracked beam. For the 2-D model, the breathing crack
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Fig. 5. 1-D-SPR model—exact and approximated computation of reduced eigenfrequencies evolution as functions of
the open-crack rate: (a) mode 1, (b) mode 3, (c) mode 5, (d) mode 7.

behaviour is simulated by means of a bilinear model. Depending upon the relative positions of
both crack edges, either a closed- or a open-crack configuration can be considered. The non-linear
time computation is made by projecting the displacement degrees of freedom on to the two modal
bases of the 2-D model, alternately the open-crack and the closed-crack modal bases, according to
the relative displacements of both crack edges at the surface of the beam. The results of this type
of representation has been compared with the results obtained with a more sophisticated model
where the breathing crack behaviour is modelled by contact springs distributed on the length of
the 2-D crack. For the first modes, the computed behaviour remains in very good agreement.
However, the computation time of the bilinear model is much smaller by a factor 10.

For both 1-D models, either an open- or closed-crack configuration is selected depending upon
the value of the second order derivative of the deflection at the crack point. This derivative is
estimated as a function of the displacements and slopes of the closest mesh nodes. The non-linear
time computation is also made by projecting the displacement degrees of freedom on to the two
modal bases of the 1-D model considered, alternately the open-crack and the closed-crack modal
bases, according to the second order derivative of the deflection at the crack point. The analysis of
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the Fourier transform of these non-linear responses allows one to determine the eigenfrequency
changes between the open crack and the breathing crack. As the non-linear behaviour generated
by a breathing crack is relatively weak, the Fourier analysis of the computed impulse responses
leads to frequency responses that can be used to correctly estimate the eigenfrequencies for
breathing crack conditions.

Fig. 7 presents the comparison of the evolution of the first three odd eigenfrequencies obtained
with the 2-D model, respectively, considering an open and a breathing crack.

The breathing crack leads to a reduction of the eigenfrequencies considered which is less than
the reduction obtained with the open crack. However, this difference seems to lower with the rank
of the eigenfrequency.

Figs. 8 and 9 present the comparison of the evolution of the first three odd eigenfrequencies
obtained with the 1-D-EF and the 1-D-SDR models, respectively, considering an open and a
breathing crack. These results illustrate the ability of 1-D models to accurately represent the
eigenfrequency shifts resulting from the presence of a breathing crack in a beam. When compared,
the shifts obtained with the 2-D model and both 1-D models are quite similar, thus confirming the
high level of accuracy obtained with 1-D models. However, this accuracy is the result of the
updating, by means of the 2-D model results, of the equivalent open-crack rate in both 1-D models.

4. Computation of non-linear effects resulting from a breathing crack

The three proposed models were then used to simulate numerically the non-linear behaviour of
a breathing crack at the middle point of the simply supported beam in bending vibrations. The
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observation point is arbitrarily located at x, = 0.70L and the excitation point is arbitrarily located
at x, = 0.32L. It is represented by a point source of shearing force, the magnitude of which may be
expressed as a function of time as follows:

F.(t) = sin(2nfpt) + sin(2xnfyt), (12)

where f; = 114 Hz and f;, = 1204 Hz.

Excitation frequency f; is very close to the first eigenfrequency of the simply supported beam.
Excitation frequency fj, is far from any eigenfrequency in that range, as well as any harmonic of
the first eigenfrequency. It has been chosen to be between the third, around 1000 Hz, and the
fourth, around 1740 Hz, eigenfrequencies of the sound simply supported beam.

This judicious choice also allows one to avoid risks of coincidence between modulation
frequencies: f,_» = f4 — fp = 1090 Hz and f;1 = f5 +f» = 1318 Hz, and harmonic frequencies of
the first eigenfrequency, respectively: 9f, = 1026 Hz, 10f, = 1140 Hz, 11f, = 1254 Hz and
12f, = 1368 Hz.
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Fig. 8. Evolution of the first three odd eigenfrequencies obtained with the 1-D-EF model, considering an open crack
and a breathing crack: (a) eigenfrequency 1, (b) eigenfrequency 3, (c) eigenfrequency 5.

The magnitude of the frequency response of the bending vibration displacement at point x, is
then obtained from the Fourier transform of the time dependent displacement at that point.
Fig. 10 presents a frequency response obtained with the 2-D model for a breathing crack with a
geometrical crack rate of 0.2.

As shown in Fig. 10, the following magnitudes are used to define two distinct damage rates that
may describe the evolution of the size of a possible crack. A, and A;, respectively, are the
magnitudes obtained at the low and high excitation frequencies f;, and f;,. 4;;, denotes the
magnitude obtained at the harmonic frequency of rank i. A;_» and A, respectively, denote the
magnitudes obtained at modulation frequencies f;,_; and f;.5. It is interesting to notice in Fig. 10
that the odd rank harmonics of the low excitation frequency do not show. As the breathing crack
generates a stiffness loss whose time dependency is numerically represented by a periodic
piecewise constant function, its Fourier transform is essentially constituted of lobes located at the
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Fig. 9. Evolution of the first three odd eigenfrequencies obtained with the 1-D-SPR model, considering an open crack
and a breathing crack: (a) eigenfrequency 1, (b) eigenfrequency 3, (c) eigenfrequency 5.

even rank harmonic frequencies. However, for larger crack rates, the odd rank harmonics of the
low excitation frequency also emerge.

Let 7y be the harmonic damage rate (HDR) associated to the geometrical crack rate of the
beam, which is dimensionless. It is determined from the magnitudes obtained at the observation
point, as follows:

TH =

1 Z?=2A12b (13)
n—1 A/,Ab '

Let 7, be the dimensionless modulation damage rate (MDR) associated to the geometrical crack
rate. It is determined from the magnitudes obtained at the observation point, as follows:

1A, + A5,

™M :E AhAb (14)
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Fig. 10. Frequency response magnitude obtained with the 2-D model for a breathing crack with a geometrical crack
rate of 0.2.

Figs. 11 and 12, respectively, illustrate the evolution of the HDR and the MDR, for the three
models considered, with the geometrical crack rate.

For crack rate values beyond 10%, the HDR and the MDR grows in a monotonic way with the
geometrical crack rate, for all models considered. For a crack rate increase from 10% to 20%, the
HDR increases by a factor 6, whereas the MDR increases only by a factor 1.7. For a crack rate
increase from 20% to 40%, the HDR increases by a factor 13, whereas the MDR increases only
by a factor 4.8. However, this result should be tempered by the fact that a simply supported beam
was being considered. Within these limits, the harmonic frequencies of the first eigenfrequency
coincide with, or remain close to, the higher rank natural eigenfrequencies of the sound beam,
thus increasing the harmonic frequency magnitudes due to the non-linear effects of the breathing
crack. Both damage rates, HDR and the MDR, seem to constitute good descriptors of the
geometric crack rate, as they grow in a monotonic way, and their growth factors are equal to or
larger than the crack rate growth factor. Concerning the 1-D simulation models under
consideration, they lead to damage rate results that are very close to the ones obtained with the 2-
D model. This result shows that the non-linear behaviour generated by the crack can accurately be
represented by a 1-D model. However, for small values of the crack rate, the 1-D-EF model tends
to underestimate the damage rates. When compared to the 2-D damage rate, the 1-D-SPR model
leads to very similar results.

5. Conclusion

The numerical approaches that have been developed in this paper were devoted to the analysis
of the dynamic behaviour of both open and breathing cracks in a flexural vibrating beam and its
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effects on the subsequent frequency response. For the breathing crack, the non-linear effects have
been more precisely examined, and descriptors for the detection of the early presence of a crack
have been proposed.

Three finite element models were implemented: two simple one-dimensional models,
respectively, 1-D-EF and 1-D-SPR, and one two-dimensional model denoted 2-D. These 1-D
models were first tuned by means of modal results obtained with the 2-D finite-element model of a
open-crack beam. When tuned, both 1-D models were used to represent the dynamic behaviour of
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a breathing crack. Both 1-D models considered, accurately simulate the non-linear effects of the
breathing crack, as the subsequent frequency response magnitudes at the observation point
correctly approximates the corresponding 2-D magnitudes, for the various geometrical crack rates
being considered. For all the models, considered, the magnitudes of the harmonic frequency lobes
of the low excitation frequency are quite visible and seem to emerge prior to the modulation lobes.
The modulation frequency lobes around the high excitation frequency also grow in a monotonic
way with the geometrical crack rate. However, the modulation lobes are quite visible, even for
very low crack rates such as a few per cent.

Based upon the frequency response magnitudes computed for various geometrical crack rates,
two distinct damage rates have been proposed as descriptors to characterize the presence of the
crack in the beam: the HDR and the MDR. The HDR and the MDR grow in a monotonic way
with the geometrical crack rate over 10%. The HDR presents a larger slope than the MDR,
making it more sensitive to the presence of a crack in the beam. Therefore, it appears that both
damage rates, HDR and the MDR, seem to constitute good descriptors of the geometrical crack
rate, as they grow in a monotonic way, and their growth factors are equal or larger than the crack
rate growth factor. Damage rate results computed with 1-D simulation models are very close to
that with 2-D model, which shows that the non-linear behaviour generated by the crack can
accurately be represented by a simple 1-D model that is properly tuned.

Nevertheless, experiments showed that the ideal behaviour of a breathing crack, such as
simulated in this analysis, may have a weak probability of occurrence in the industrial world.
Most of the time, some static traction or compression stresses apply to the crack region in such a
way that the time dependency of the stiffness loss at the crack point is slightly different from a
periodic piecewise constant function, and its magnitude will also usually depend upon the crack
geometry in a non-linear way. However, the measured effects of the non-linear dynamic behaviour
of a breathing crack, such as the HDR and the MDR, are not very sensitive to pre-stressing
conditions. As long as the crack opens and closes with the dynamic motion, they will grow in a
monotonic way with the crack rate, whatever pre-stressing conditions they may be.
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